Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
ACS Omega ; 6(2): 1316-1327, 2021 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-33490791

RESUMO

Silver nanoparticles (Ag-NPs) adhered/inserted on textile fibers have an effective antimicrobial role. However, their release due to low adherence and their fate in the natural settings have been questioned in terms of toxicity level. In order to overcome this recurrent problem of adherence, the in situ formation of Ag-NPs in five textile fibers (cotton (untreated and chemically bleached), sheep's wool, polyamide, and polyester) was assessed. Herein, the fibers were first immersed in a silver ion solution (1 g/L of AgNO3) for ion saturation at room T for 24 h followed by draining fibers and their reimmersion this time in a strong chemical reducing solution (0.25 g/L of NaBH4) at room T for 24 h. This latter step leads to the in situ formation of Ag-NPs where size (5 nm < size < 50 nm), surface covering concentration, and aggregation degree depend on the textile fiber kind as deduced from FESEM images. This simple lab chemical method allows instantaneous in situ formation of Ag-NPs onto fibers without the requirement of additional thermal treatment. Moreover, for natural fibers, the formation of Ag-NPs inside of them is also expected as confirmed from FESEM images in cotton cross sections. In complement, all textile fibers containing Ag-NPs (sheep's wool 10 mg/g > untreated cotton 2.3 mg/g > bleached cotton 1 mg/g > polyamide 0.62 mg/g > polyester 0.28 mg/g) were submitted to interact with strong oxidants in an aqueous media (7.5% v/v of H2O2, 0.5 and 0.05 M of HNO3 and ultrapure water as the control) using flow-through reactor experiments. Here, breakthrough curves reveal that the oxidative dissolution rate (given in mol/g min) of adhered Ag-NPs (ionic release) depends strongly on fiber nature, and nature and concentration of oxidant solution. In summary, this fundamental study suggests that Ag-NPs may be successfully adhered/inserted in natural fibers (wool and cotton) in a safety-design perspective with performant biocide properties as confirmed by using Bacillus subtilis.

2.
Environ Sci Technol ; 52(1): 107-113, 2018 01 02.
Artigo em Inglês | MEDLINE | ID: mdl-29210275

RESUMO

Antimony, which has damaging effects on the human body and the ecosystem, can be released into soils, ground-, and surface waters either from ore minerals that weather in near surface environments, or due to anthropogenic releases from waste rich in antimony, a component used in batteries, electronics, ammunitions, plastics, and many other industrial applications. Here, we show that dissolved Sb can interact with calcite, a widespread carbonate mineral, through a coupled dissolution-precipitation mechanism. The process is imaged in situ, at room temperature, at the nanometer scale by using an atomic force microscope equipped with a flow-through cell. Time-resolved imaging allowed following the coupled process of calcite dissolution, nucleation of precipitates at the calcite surface and growth of these precipitates. Sb(V) forms a precipitate, whereas Sb(III) needs to be oxidized to Sb(V) before being incorporated in the new phase. Scanning-electron microscopy and Raman spectroscopy allowed identification of the precipitates as two different calcium-antimony phases (Ca2Sb2O7). This coupled dissolution-precipitation process that occurs in a boundary layer at the calcite surface can sequester Sb as a solid phase on calcite, which has environmental implications as it may reduce the mobility of this hazardous compound in soils and groundwaters.


Assuntos
Antimônio , Carbonato de Cálcio , Ecossistema , Humanos , Minerais , Solo
3.
Environ Sci Technol ; 47(23): 13469-76, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24219361

RESUMO

Calcite, a widespread natural mineral at the Earth's surface, is well-known for its capacity to sequester various elements within its structure. Among these elements, selenium is important because of its high toxicity in natural systems and for human health. In the form of selenite (Se((IV))), selenium can be incorporated into calcite during growth. Our in situ atomic force microscopy observations of calcite surfaces during contact with selenium-bearing solutions demonstrate that another process of selenium trapping can occur under conditions in which calcite dissolves. Upon the injection of solutions containing selenium in two states of oxidation (either Se((IV)) or Se((VI))), precipitates were observed forming while calcite was still dissolving. In the presence of selenate (Se((VI))), the precipitates formed remained small during the observation period. When injecting selenite (Se((IV))), the precipitates grew significantly and were identified as CaSeO3·H2O, based on SEM observations, Raman spectroscopy, and thermodynamic calculations. An interpretation is proposed where the dissolution of calcite increases the calcium concentration in a thin boundary layer in contact with the surface, allowing the precipitation of a selenium phase. This process of dissolution-precipitation provides a new mechanism for selenium sequestration and extends the range of thermodynamic conditions under which such a process is efficient.


Assuntos
Carbonato de Cálcio/química , Selênio/química , Recuperação e Remediação Ambiental , Microscopia de Força Atômica , Microscopia Eletrônica de Varredura , Oxirredução , Análise Espectral Raman , Termodinâmica
4.
Environ Sci Technol ; 47(12): 6247-53, 2013 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-23725478

RESUMO

The possible intrusion of CO2 into a given freshwater aquifer due to leakage from deep geological storage involves a decrease in pH, which has been directly associated with the remobilization of hazardous trace elements via mineral dissolution and/or via desorption processes. In an effort to evaluate the potential risks to potable water quality, the present study is devoted to experimental investigation of the effects of CO2 intrusion on the mobility of toxic ions in simplified equilibrated aquifers. We demonstrate that remobilization of trace elements by CO2 intrusion is not a universal physicochemical effect. In fact goethite and calcite, two minerals frequently found in aquifers, could successfully prevent the remobilization of adsorbed Cu(II), Cd(II), Se(IV), and As(V) if CO2 is intruded into a drinking water aquifer. Furthermore, a decrease in pH resulting from CO2 intrusion could reactivate the adsorption of Se(IV) and As(V) if goethite and calcite are sufficiently available in underground layers. Our results also suggest that adsorption of cadmium and copper could be promoted by calcite dissolution. These adsorbed ions on calcite are not remobilized when CO2 is intruded into the system, but it intensifies calcite dissolution. On the other hand, arsenite As(III) is significantly adsorbed on goethite, but is partially remobilized by CO2 intrusion.


Assuntos
Dióxido de Carbono/análise , Água Doce/química , Água Subterrânea/química , Arsenitos/análise , Cádmio/análise , Cobre/análise
5.
Chemistry ; 19(17): 5417-24, 2013 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-23447107

RESUMO

Herein, we report new insights into the nucleation and growth processes of chrysotile nanotubes by using batch and semi-continuous experiments. For the synthesis of this highly carcinogenic material, the influences of temperature (90, 200, and 300 °C), Si/Mg molar ratio, and reaction time were investigated. From the semi-continuous experiments (i.e., sampling of the reacting suspension over time) and solid-state characterization of the collected samples by XRPD, TGA, FTIR spectroscopy, and FESEM, three main reaction steps were identified for chrysotile nucleation and growth at 300 °C: 1) formation of the proto-serpentine precursor within the first 2 h of the reaction, accompanied by the formation of brucite and residual silica gel; 2) spontaneous nucleation and growth of chrysotile between about 3 and 8 h reaction time, through a progressive dissolution of the proto-serpentine, brucite, and residual silica gel; and 3) Ostwald ripening growth of chrysotile from 8 to 30 h reaction time, as attested to by BET and FESEM measurements. Complementary results from batch experiments confirmed a significant influence of the reaction temperature on the kinetics of chrysotile formation. However, FESEM observations revealed some formation of chrysotile nanotubes at low temperatures (90 °C) after 14 days of reaction. Finally, doubling the Si/Mg molar ratio promoted the precipitation of pure smectite (stevensite-type) under the same P (8.2 MPa)/T (300 °C)/pH (13.5) conditions.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...